Uniqueness of Best Simultaneous Approximation and Strictly Interpolating Subspaces

D. Amir

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Communicated by Oved Shisha

Received April 20, 1982; revised September 20, 1982

It is shown that for uniqueness of best simultaneous approximation for bounded sets, the notion of interpolating subspace should be replaced by a stricter one which takes care of the weak* cluster points of the extreme points of the dual ball.

1

If F, G are (nonempty) subsets of a normed linear space E, F bounded, a best simultaneous approximation to F in G is $y_0 \in G$ minimizing $r(y, F) \equiv$ $\sup_{x \in F} ||x - y||$. The set of best simultaneous approximations to F in G is denoted $Z_G(F)$ and called also the (relative, or restricted) Chebyshev center for F in G, and $r_G(F) \equiv \inf_{y \in G} r(y, F)$ is called the Chebyshev radius of F with respect to G. Conditions for uniqueness of Chebyshev centers (i.e., $Z_G(F)$ being a singleton) were studied by Golomb [Go], Garkavi [Ga], Laurent-Tuan [LT], Rozema-Smith [RS], Lambert-Milman [LM], Amir-Ziegler [AZ] and Sahney–Singh [SS].

Necessary and sufficient conditions for a convex G to have a Chebyshev center which is at most a singleton for all F can be summarized by

THEOREM A [AZ]. Let G be a convex subset of the normed linear space E. Then

The following are equivalent: (a)

(i) Every compact F in E has a relative Chebyshev center in Gwhich is at most a singleton.

(ii) Every pair $F = \{x, y\}$ in E has a relative Chebyshev center in G which is at most a singleton.

(iii) E is strictly convex with respect to G (i.e., the unit sphere of E contains no nontrivial segment parallel to a segment in G).

(b) Every bounded F in E has a relative Chebyshev center in G which is at most a singleton if and only if E is uniformly convex in every direction of G (i.e., iff $0 \neq x_n - z_n = \lambda_n y \in G$, $||x_n|| = ||z_n|| = 1$ and $||x_n + z_n|| \to 2$ implies $\lambda_n \to 0$).

A weaker uniqueness property had been observed by Golomb and others for interpolating subspaces. Recall that an *n*-dimensional subspace Y of a normed space E is called an *interpolating subspace* [ADMO] if no nontrivial linear combination of n linearly independent extreme points of the dual ball $B(E^*)$ annihilates Y. This generalizes the notion of Haar subspaces in C[a, b]. If $y_1, ..., y_n$ are linearly independent elements of a normed space E, call $G = \{\sum_{i=1}^{n} c_i y_i; c_i \in J_i\}$ an RS-set if J_i are intervals of the types (I) a singleton, (II) a nontrivial proper closed (bounded or unbounded) interval in R, or (III) the whole line, and if every subset of $\{y_1, ..., y_n\}$ consisting of all y_i with J_i of type III and some y_i with J_i of type II spans an interpolating subspace.

THEOREM B. If G is an RS-set in a normed linear space E, then for every compact $F \subset E$ with $r_E(F) < r_G(F)$, $Z_G(F)$ is a singleton.

The particular case when all the intervals determining G are of type III, i.e., when G is a interpolating subspace is

THEOREM B₀. If G is an interpolating subspace of the normed linear space E, then for every compact $F \subset E$ with $r_E(F) < r_G(F)$, $Z_G(F)$ is a singleton.

Theorem B was proved in [RS] for the case E = C[a, b], and Remark 2 on p. 170 suggests the generalization to the general setting. Theorems 3 and 4 in [LM] claim that Theorems B₀ and B are valid also when F is assumed only to be bounded (and not necessarily compact). This is false, as exhibited by

EXAMPLE 1. Let $E = \{x \in C[-1, 1]; x(0) = \frac{1}{2}(x(-1) + x(1))\}$ (with the sup norm), $y_0(t) = t$, $G = \text{span } y_0$, $F = \{x \in E; 0 \le x(t) \le 1 - |t|\}$. Since ext $B(E^*) = \{\pm e_t; 0 < |t| \le 1\}$ (where $e_t(x) = x(t)$), G is a one-dimensional interpolating subspace. $r_E(F) = r(\frac{1}{2}, F) = \frac{1}{2} < 1 = r_G(F) = r(\alpha y_0, F)$ for $|\alpha| \le 1$.

A corrected version of the Lambert-Milman theorems should take care of the w^* -accumulation points of ext $B(E^*)$. Call an n - dimensional subspace $Y = \text{span}\{y_1, ..., y_n\}$ of E strictly interpolating if no nontrivial linear combination of n linearly independent functionals in the w^* -closure ext $B(E^*)$ annihilates Y.

Other equivalent statements of the strict interpolation condition are:

D. AMIR

(i) For every linearly independent $f_1, ..., f_n \in \overline{\text{ext}} B(E^*)$, det $[f_i(y_i)] \neq 0$.

(ii) For every linearly independent $f_1, ..., f_n \in \overline{\text{ext }} B(E^*)$, and scalars $c_1, ..., c_n$, there is a unique $y \in Y$ with $f_i(y) = c_i$ for i = 1, ..., n.

(iii) For every linearly independent $f_1,...,f_n \in \overline{\text{ext }} B(E^*)$, $E^* = Y^{\perp} \oplus \text{span}\{f_1,...,f_n\}$.

Interpolating subspaces of E are trivially strictly interpolating if ext $B(E^*)$ is w*-closed, e.g., in C(T) spaces (T compact) or $L^1(\mu)$ spaces, or if ext $B(E^*) \cup 0$ is w*-closed, e.g., in $C_0(T)$ spaces (T locally compact).

Call $G \subset E$ a strictly RS-set if it is an RS-set, and the interpolation condition is replaced by strict interpolation.

THEOREM C. If G is a strictly RS-set in the normed space E, then for every bounded $F \subset E$ with $r_E(F) < r_G(F)$, $Z_G(F)$ is a singleton.

In particular,

THEOREM C₀. If G is a strictly interpolating subspace of the normed space E, then for every bounded $F \subset E$ with $r_E(F) < r_G(F)$, $Z_G(F)$ is a singleton.

Proof of Theorem C. We shall show that if $y', y'' \in G$, and $z \in E$ satisfy $r(y', F) = r(y'', F) > r(z, F) + 2\varepsilon$, for some $\varepsilon > 0$ and $y' \neq y''$, then there is $y \in G$ with r(y, F) < r(y', F). If $y' = \sum_{i=1}^{n} c'_{i} y_{i}$ and $y'' = \sum_{i=1}^{n} c''_{i} y_{i}$ let $I_{0} =$ $\{i; J_i \text{ of type III or } c'_i \neq c''_i\}$. Since G is a strict RS-set, $W = \{f \in \overline{\text{ext } B(E^*)}; f \in \overline{\text{ext } B(E^*)}\}$ f(y') = f(y'') spans a subspace of dimension smaller than card I_0 , and there is $y_0 = \sum_{i \in I_0} t_i y_i + \sum_{i \notin I_0} c'_i y_i$ with $f(y_0) = f(z)$ for every $f \in W$. Let $V = \{f \in ext B(E^*); |f(y_0) - f(z)| < \varepsilon\}$. V is relatively w*-open, hence ext $B(E^*) \setminus V$ is w*-compact and, since $f(y') \neq f(y'')$ off $V, \eta \equiv$ $\min\{|f(y')-f(y'')|; f \in \overline{\operatorname{ext}} B(E^*) \setminus V\} > 0. \text{ Let } \delta \equiv \min\{|c_i'-c_i''|; i \in I_0 \text{ and } i \leq i \leq n \}$ $c'_{i} \neq c''_{i}$. Choose $\alpha \in (0, 1)$ with $|2\alpha(t_{i} - (c'_{i} + c''_{i})| < \delta, 4\alpha(||y_{0}|| + \delta))$ $\sup_{x \in F} ||x|| < \eta$ and let $y = ((1 - \alpha)/2)(y' + y'') + \alpha y_0 = \sum_{i \in I_0} ((1 - \alpha)/2)$ $(c'_i + c''_i) + \alpha t_i) y_i + \sum_{i \notin I_0} c'_i y_i$. Then $y \in G$ by the choice of α . If ||x - y|| > q for some $x \in F$, then there is some $f \in \operatorname{ext} B(E^*)$ with |f(x) - f(y)| > q. If $f \in V$, then $q < |f(x) - f(y)| \leq (1 - \alpha)$ $|f(x) - f((y' + y'')/2)| + \alpha(|f(x) - f(z)| + \varepsilon) \leq (1 - \alpha) r(y', F) + \alpha(|f(x) - f(z)| + \varepsilon)$ $\alpha(r(z,F)+\varepsilon) \leqslant r(y',F)-\varepsilon\alpha$. If $f \notin V$, then $|f(x)-\frac{1}{2}f(y'+y'')| \leqslant$ $\max(|f(x) - f(y')|, |f(x) - f(y'')|) - \frac{1}{2}|f(y') - f(y'')| \leq r(y', F) - \frac{1}{2}\eta;$ hence $q < |f(x) - f(y)| \le (1 - \alpha)(r(y', F) - \frac{1}{2}\eta) + \alpha(||x|| + ||y_0||) \le$ $r(y', F) - \frac{1}{4}\eta$. Thus $r(y, F) \leq r(y', F) - \min(\frac{1}{4}\eta, \varepsilon \alpha)$.

2

The mistake in [LM] stems from a blunder in the proof of Theorem 2. Lambert and Milman relate to a bounded nontrivial $F \subset E$ the space $A_F \equiv E \oplus R$ with the norm $||(x, \lambda)|| = r(x, \lambda F)$. Their Theorem 2 claims that if $(f, \mu) \in \operatorname{ext} B(A_F^*)$ then $f \in \operatorname{ext} B(E^*)$. The proof is first carried out in the case where F is a finite set, and the reduction argument is (4) $B(A_F^*) = \bigcup \{B(A_{F'}^*); F' \subset F, F' \text{ finite}\}$ which seems to follow from $B(A_F) = \bigcap \{B(A_{F'}); F' \subset F \text{ finite}\}$. This deduction is false, e.g.,

EXAMPLE 2. Let $F = \{e_k; k = 1, 2, ...\}$ be the set of unit vectors in $E = l_1, f = \sum_{k=1}^{\infty} e_k^* \in l_{\infty}$ (the constant sequence (1, 1, 1, ...)). The A_F norm is $||(x, \lambda)|| = \sup_k ||x - \lambda e_k||$, so that $||(f, 0)|| = \sup_k ||\sum_{i=1}^{\infty} x_i|$; $\sup_k ||x - \lambda e_k|| \le 1\} = \sup_k \sum_{i=1}^{n} |x_i|$; $\sup_k \sum_{i \ne k} |x_i| \le 1\} = 1$. If $F_n = \{e_k; k = 1, ..., n\}$ then, in $A_{F_n}, ||(\sum_{k=1}^{n} (1/(n-1))e_k, 1/(n-1))|| = 1$, while $(f, 0)(\sum_{k=1}^{n} (1/(n-1))e_k, 1/(n-1)) = n/(n-1)$, so that $(f, 0) \notin B(A_{F_n})$.

We can see from Example 1 that Theorem 2 is false. In this case the A_F norm on the two dimensional subspace $G \oplus R$ is the l_{∞}^2 norm $||(\alpha y_0, \lambda)|| = \max(|\alpha|, |\lambda|)$, and the extreme points of the dual ball are (0, 1) and (1, 0). But these extreme points are restrictions of functionals $(f, \mu) \in \operatorname{ext} B(A_F^*)$, while clearly no $f \in \operatorname{ext} B(E^*)$ is 0 on G.

Equation (4) in the proof of Therem 2 is valid, however, when F is compact (or even "remotal"), since in this case $||(x, \lambda)||_F = ||(x, \lambda)||_{\{z\}}$, where z is a farthest point from x in λF . Therefore, Theorem B can be proved by the proof of Theorems 2–4 in [LM]. A more direct approach is also possible, e.g.,

Sketch of a Proof of Theorem B₀. Suppose $\pm y_0 \in Z_G(F)$. By a result of Laurent and Tuan (cf. [AM] for a direct proof), there is g_0 in the w*-closure of $\{f \in \operatorname{ext} B(E^*); f(x \pm y_0) = r_G(F) \text{ for some } x \in F\}$ with $g_0(y_0) = \max_{y \in G} f(y)$, which in our case means $g_0 \in G^{\perp}$. The Caratheodory and Krein-Milman theorems provide us with $f_0, \dots, f_n \in \operatorname{ext} B(E^*), x_0, \dots, x_n \in F$ and $c_0, \dots, c_n \ge 0$ such that $\sum_{i=0}^n c_i = 1, f \sum_{i=0}^n c_i f_i \in G^{\perp}$, and $f_i(x_i \pm y_0) = r_G(F) = r_G\{x_0, \dots, x_n\}$, hence $f_i(y_0) = 0$ for $i = 0, \dots, n$. If f = 0, then by the same characterization of Chebyshev centers, $0 \in Z_E(F)$ and $r_E(F) = r_G(F)$, contradicting our assumption. Therefore, since G is interpolating, f_0, \dots, f_n are linearly independent. But then, for the same reason $y_0 = 0$.

Checking the proof of Theorem C it is seen that we can weaken the strict interpolation condition, e.g.,

D. AMIR

THEOREM D₀. If Y is a subspec of the normed space E such that for every $y_0 \in Y$, $z \in E$ and $\varepsilon > 0$ there is $y_1 \in Y$ satisfying $\inf\{f(y_1); f \in \operatorname{ext} B(E^*), |f(z-y_0)| > \varepsilon\} > 0$, then for every bounded $F \subset E$ with $r_E(F) < r_G(F), Z_G(F)$ is at most a singleton.

EXAMPLE 3. An infinite dimensional subspace Y satisfying the conditions of Theorem D_0 : $E = \{x \in C[-1, 1]; x(0) = 0\}, Y = \{x \in E; x \text{ restricted to } [0, 1] \text{ is a polynomial of degree } \leqslant n\}.$

4

A uniqueness theorem of an individual type was given in [SS]. Theorem 1 states that if K is a (not necessarily convex) compact subset of a normed linear space E and $F \subset E$ is "uniquely remotal" with respect to K (i.e., such that every $x \in K$ has a unique farthest point in F), then $Z_K(F)$ is a single point. This is false, even if we assume K, F convex, or if we change the assumption to K being uniquely remotal with respect to F.

EXAMPLE 4. (a) E any, $K = \{x, y\}, F = \{(x + y)/2\}.$

- (b) E non-strictly convex, $K = \{x, y\} \subset S(E), F = \{0\}.$
- (c) E any, $K = F = \{x, y\}.$
- (d) $E = l_{\infty}^2, K = [-e_2, e_2], F = \{e_1 + e_2\}.$

In none of these examples is $Z_K(F)$ a singleton.

References

- [AM] D. AMIR AND J. MACH, Chebyshev centers in normed spaces, J. Approx. Theory, in press.
- [AZ] D. AMIR AND Z. ZIEGLER, Relative Chebyshev centers in normed linear spaces, J. Approx. Theory 29 (1980), 235–252.
- [ADMO] D. A. AULT, F. R. DEUTSCH, P. D. MORRIS, AND J. E. OLSEN, Interpolating subspaces in approximation theory, J. Approx. Theory 3 (1970), 164–182.
- [Ga] A. L. GARKAVI, The best possible net and the best possible cross section of a set in a normed space, *Izv. Akad. Nauk SSSR Ser. Mat.* 26 (1962), 87-106; Amer. Math. Soc. Transl., Ser. 4, Vol. 39, 1964.
- [Go] M. GOLOMB, On the uniformly best approximation of functions given by Incomplete data, M. R. C. Techn. Summary Report 121, Univ. of Wisconsin, Madison, December 1959.
- [LM] J. M. LAMBERT AND D. D. MILMAN, Restricted Chebyshev centers of bounded subsets in arbitrary Banach spaces, J. Approx. Theory 26 (1979), 71–78.
- [LT] P. J. LAURENT AND P. D. TUAN, Global approximation of a compact set by elements of a convex set in a normed space, *Numer. Math.* 15 (1970), 137–150.

- [RS] E. R. ROZEMA AND P. W. SMITH, Global approximation with bounded coefficients, J. Approx. Theory 16 (1976), 162-174.
- [SS] B. N. SAHNEY AND S. D. SINGH, On best simultaneous approximation, in "Approximation Theory, III" (E. W. Cheney, Ed.), pp. 783-789, Academic Press, 1980.