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It is shown that for uniqueness of best simultaneous approximation for
bounded sets, the notion of interpolating subspace should be replaced by a stricter
one which takes care of the weak * cluster points of the extreme points of the dual
ball.

If F, G are (nonempty) subsets of a normed linear space E, F bounded, a
best simultaneous approximation to F in G is Yo E G minimizing r(y, F) ==
SUPXEF II x - y II. The set of best simultaneous approximations to F in G is
denoted ZG(F) and called also the (relative, or restricted) Chebyshev center
for F in G, and rdF) == infYEG r(y, F) is called the Chebyshev radius of F
with respect to G. Conditions for uniqueness of Chebyshev centers (i.e.,
ZG(F) being a singleton) were studied by Golomb [Go], Garkavi [Gal,
Laurent-Tuan [LT], Rozema-Smith [RS], Lambert-Milman [LM], Amir­
Ziegler [AZ] and Sahney-Singh [SS].

Necessary and sufficient conditions for a convex G to have a Chebyshev
center which is at most a singleton for all F can be summarized by

THEOREM A [AZ]. Let G be a convex subset of the normed linear space
E. Then

(a) The following are equivalent:

(i) Every compact F in E has a relative Chebyshev center in G
which is at most a singleton.

(ii) Every pair F = {x, y} in E has a relative Chebyshev center in
G which is at most a singleton.

(iii) E is strictly convex with respect to G (i.e., the unit sphere of
E contains no nontrivial segment parallel to a segment in G).
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(b) Every bounded F in E has a relative Chebyshev center in G which
is at most a singleton if and only if E is uniformly convex in every direction

ofG (i.e., ijJO*xn-zn=AnyEG, Ilxnll=llznll=1 and Ilxn +znll---t2
implies An -> 0).

A weaker uniqueness property had been observed by Golomb and others
for interpolating subspaces. Recall that an n-dimensional subspace Y of a
normed space E is called an interpolating subspace [ADMO] if no nontrivial
linear combination of n linearly independent extreme points of the dual ball
B(E*) annihilates Y. This generalizes the notion of Haar subspaces in
Cia, b]. If YI '''''Yn are linearly independent elements of a normed space E,
call G = n::7= 1 ci y;; c; E J;l an RS-set if J i are intervals of the types (I) a
singleton, (II) a nontrivial proper closed (bounded or unbounded) interval in
R, or (III) the whole line, and if every subset of {Y!'"".,Ynl consisting of all
Yi with J; of type III and some Yi with J i of type II spans an interpolating
subspace.

THEOREM B. If G is an RS-set in a normed linear space E, then for
every compact FeE with reCF) < rG(F), ZcCF) is a singleton.

The particular case when all the intervals determining G are of type III,
i.e., when G is a interpolating subspace is

THEOREM Bo' If G is an interpolating subspace of the normed linear
space E, then for every compact FeE with rE(F) < rG(F), ZcCF) is a
singleton.

Theorem B was proved in [RS] for the case E = Cia, b], and Remark 2 on
p. 170 suggests the generalization to the general setting. Theorems 3 and 4 in
[LM] claim that Theorems Bo and B are valid also when F is assumed only
to be bounded (and not necessarily compact). This is false, as exhibited by

EXAMPLE I. Let E = {x E CI-l, I]; xeD) = 1(x(-I) + x(l)f (with the
sup norm), yo(t)=t, G=spanyo, F= {xEE;O~x(t)~l-Itl}. Since
ext B(E*) = {±e(;°< Itl ~ 11 (where e(x) = x(t», G is a one-dimensional
interpolating subspace. rE(F) = r(-L F) =! < 1= rcCF) = r(ayo' F) for
lal ~ I.

A corrected version of the Lambert-Milman theorems should take care of
the w*-accumulation points of ext B(E*). Call an n-dimensional subspace
Y = span{y 1 , ... , YnI of E strictly interpolating if no nontrivial linear
combination of n linearly independent functionals in the w*-closure
ext B(E*) annihilates Y.

Other equivalent statements of the strict interpolation condition are:
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(i) For every linearly independent fl'"'' fn E ext B(E*),
det[j;(Yj)] -=1= 0.

(ii) For every linearly independent fl ,...,fn E ext B(E*), and scalars
c I , ... , cn' there is a unique Y E Y with fly) = c i for i = 1,..., n.

(iii) For every linearly independent fl ,...,fn E ext B(E*), E* =
y1 ffi span{ll'.. ·,fn}·

Interpolating subspaces of E are trivially strictly interpolating if ext B(E*)
is w*-closed, e.g., in C(T) spaces (T compact) or L1(P) spaces, or if
ext B(E*) U °is w*-closed, e.g., in Co(T) spaces (T locally compact).

Call GeE a strictly RS-set if it is an RS-set, and the interpolation
condition is replaced by strict interpolation.

THEOREM C. If G is a strictly RS-set in the normed space E, then for
every bounded FeE with rE(F) < rG(F), ZG(F) is a singleton.

In particular,

THEOREM Co' If G is a strictly interpolating subspace of the normed
space E, then for every bounded FeE with rE(F) < rdF), ZG(F) is a
singleton.

Proof of Theorem C. We shall show that if y', Y II E G, and z E E satisfy
r(y', F) = r(y", F) > r(z, F) + 2e, for some e > 0 and y' -=1= y", then there is
y E G with r(y, F) < r(y', F). If y' = L7= I c; Yi and y" = L7~ I c;' Yi let 10 =
Ii; J i of type III or c; -=1= cn Since G is a strict RS-set, W = {IE ext B(E*);
f(y') =f(y")} spans a subspace of dimension smaller than card 10 , and
there is yo = LiEfo tiYi + LWo C;Yi with f(yo) =f(z) for every fE W. Let
V = {fE ext B(E*); I!(yo) - f(z)1 < e}. V is relatively w*-open, hence
ext B(E*)\V is w*-compact and, since f(y') -=l=f(y") off V, 1/ 0=
min{lf(y') - fly")I;fE ext B(E*)\Vf >O. Let 60= min{lc; - c;'I; i E 10 and
c; -=1= c!'}. Choose a E (0, 1) with 12a(ti - (c; + cnl < 6, 4a(11 yo II +
SUPXEF II xii) < 1/ and let y = «1 - a)/2)(y' +y") + ayo = LiEfJ(1 - a)/2)
(c!+Cn+ati)Yi+LiEIoC;Yi' Then yEG by the choice of a. If
Ilx - yll > q for some x E F, then there is some fE ext B(E*) with
If(x)-f(y)l>q. If fEV, then q<lf(x)-f(y)I~(I-a)

If(x) - f«y' +y")/2)1 + a(lf(x) - f(z)1 + e) ~ (1 - a) r(y', F) +
a(r(z, F) + e) ~ r(y', F) - ea. If fE V, then If(x) - if(V' + y")1 ~
max(lf(x) - f(y')I, If(x) - f(y")I) - 1lf(y') - f(y")1 ~ r(y', F) -11/;
hence q < If(x) - f(y)1 ~ (1 - a)(r(y', F) - i 1/) + a(llxll + II Yol!) ~

r(y', F) - ~1/. Thus r(y, F) ~ r(y', F) - min(~ 1/, ea).
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The mistake in [LM] stems from a blunder in the proof of Theorem 2.
Lambert and Milman relate to a bounded nontrivial FeE the space
A F == E EB R with the norm II(x, ,1)11 = rex, AF). Their Theorem 2 claims that if
(f,,u) E ext B(An then fE ext B(E*). The proof is first carried out in the
case where F is a finite set, and the reduction argument is (4) B(An =

U{B(At,); F' c F, F' finite} which seems to follow from B(A F ) = n{B(A F ,);

F' c F finite}. This deduction is false, e.g.,

EXAMPLE 2. Let F = {ek ; k = 1,2,... } be the set of unit vectors in
E=l" f=2:.'t'=letEloo (the constant sequence (1,1,1,... )). The Al
norm is II(x,A)II=suPkllx-Aekll, so that II(f,O)II=sup{l2:.~lx;l;

SUPk Ilx - Aekll:::;; I} = sup {2:.7= 1 Ix;l; SUPk 2:.;ick Ix;l:::;; I} = 1. If Fn =
{e k ; k = 1,... , n} then, in AF , 11(2:.Z=l (1/(n - 1)) ek , I/(n - 1)11 = 1, while
(I, O)(2:.Z=l (1/(n - 1)) ek, lien - 1)) = nl(n - 1), so that (I, 0) EB(An.

n

We can see from Example 1 that Theorem 2 is false. In this case the Al
norm on the two dimensional subspace GEB R is the l~ norm II(ayo' ,1)11 =
max(lal, 1,11), and the extreme points of the dual ball are (0,1) and (1,0).
But these extreme points are restrictions of functionals (f,,u) E ext B(A J),
while clearly no fE ext B(E*) is 0 on G.

Equation (4) in the proof of Therem 2 is valid, however, when F is
compact (or even "remotal"), since in this case II(x, ,1)111 = lI(x, A)II,zl' where z
is a farthest point from x in AF. Therefore, Theorem B can be proved by the
proof of Theorems 2-4 in [LM]. A more direct approach is also possible,
e.g.,

Sketch of a Proof of Theorem Bo' Suppose ±Yo E ZG(F). By a result of
Laurent and Tuan (cf. [AM] for a direct proof), there is go in the w*-closure
of {IE ext B(E*); f(x ± Yo) = rG(F) for some x E F} with go(yo) =
maxyEGf(y), which in our case means go E G1. The Caratheodory and
Krein-Milman theorems provide us with fo, ... ,fn E ext B(E*), X o,"" x n E F
and CO'",, cn >0 such that 2:.7~0 ci = 1, f2:.7=0 c;/; E G1

, and /;(x; ± Yo) =
rG(F) = rG {xo,... , x n }, hence /;(Yo) = 0 for i = 0,..., n. If f = 0, then by the
same characterization of Chebyshev centers, 0 E ZE(F) and rF;(F) = rdF),
contradicting our assumption. Therefore, since G is interpolating, fo ,... ,fn are
linearly independent. But then, for the same reason Yo = O.

3

Checking the proof of Theorem C it is seen that we can weaken the strict
interpolation condition, e.g.,
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THEOREM Do. If Y is a subspce of the normed space E such that for
every Yo E Y, z E E and e >0 there is Yl E Y satisfying inf{f(Yl);

fE ext B(E*), If(z - Yo)1 > e} >0, then for every bounded FeE with
rE(F) < rG(F), ZG(F) is at most a singleton.

EXAMPLE 3. An infinite dimensional subspace Y satisfying the

conditions of Theorem Do: E = {x E C[-1, 1]; x(O) = O}, Y = {x E E; x
restricted to [0, 1] is a polynomial of degree (;n}.

4

A uniqueness theorem of an individual type was given in [SS]. Theorem 1
states that if K is a (not necessarily convex) compact subset of a normed

linear space E and FeE is "uniquely remotal" with respect to K (i.e., such

that every x E K has a unique farthest point in F), then Z K(F) is a single

point. This is false, even if we assume K, F convex, or if we change the

assumption to K being uniquely remotal with respect to F.

EXAMPLE 4. (a) Eany,K={x,y},F={(x+y)/2}.

(b) E non-strictly convex, K = lx, y] c SeE), F = {O}.

(c) Eany,K=F={x,Y}.

(d) E=l~, K= [-e 2 ,e2 ], F= {e l +e2 }.

In none of these examples is ZK(F) a singleton.
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