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It is shown that for uniqueness of best simultaneous approximation for
bounded sets, the notion of interpolating subspace should be replaced by a stricter
one which takes care of the weak* cluster points of the extreme points of the dual
ball.

If F, G are (nonempty) subsets of a normed linear space E, F bounded, a
best simultaneous approximation to F in G is y, € G minimizing r(y, F)=
sup,.rllx —y||. The set of best simultaneous approximations to F in G is
denoted Z,(F) and called also the (relative, or restricted) Chebyshev center
for F in G, and rg(F)=inf ., r(y, F) is called the Chebyshev radius of F
with respect to G. Conditions for uniqueness of Chebyshev centers (i.e.,
Z (F) being a singleton) were studied by Golomb [Go], Garkavi [Ga],
Laurent-Tuan [LT|, Rozema~Smith [RS], Lambert—-Milman [LM]|, Amir—
Ziegler [AZ] and Sahney—Singh [SS].

Necessary and sufficient conditions for a convex G to have a Chebyshev
center which is at most a singleton for all F can be summarized by

THEOREM A [AZ]. Let G be a convex subset of the normed linear space
E. Then

(a) The following are equivalent:

(i) Every compact F in E has a relative Chebyshev center in G
which is at most a singleton.

(ii) Every pair F = {x,y} in E has a relative Chebyshev center in
G which is at most a singleton.

(ili) E is strictly convex with respect to G (i.e., the unit sphere of
E contains no nontrivial segment parallel to a segment in G).
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(b) Every bounded F in E has a relative Chebyshev center in G which
is at most a singleton if and only if E is uniformly convex in every direction
of G (ie Iff O#x,—2,=4,yEG, x| =llzl=1 and |x,+z,|-2
implies 1, - 0).

A weaker uniqueness property had been observed by Golomb and others
for interpolating subspaces. Recall that an r-dimensional subspace Y of a
normed space E is called an interpolating subspace [ADMO] if no nontrivial
linear combination of n linearly independent extreme points of the dual ball
B(E*) annihilates Y. This generalizes the notion of Haar subspaces in
Cla, b]. If y,,...,y, are linearly independent elements of a normed space E,
call G={)7_,c;y;sc;€J;} an RS-set if J; are intervals of the types (I) a
singleton, (II) a nontrivial proper closed (bounded or unbounded) interval in
R, or (III) the whole line, and if every subset of {y,,...,y,} consisting of all
y; with J; of type III and some y; with J; of type II spans an interpolating
subspace.

THEOREM B. If G is an RS-set in a normed linear space E, then for
every compact F C E with r(F) < re(F), Z(F) is a singleton.

The particular case when all the intervals determining G are of type III,
i.e., when G is a interpolating subspace is

THEOREM B,. If G is an interpolating subspace of the normed linear
space E, then for every compact F CE with rp(F)<rg(F), Z F) is a
singleton.

Theorem B was proved in [RS] for the case E = Ca, b], and Remark 2 on
p. 170 suggests the generalization to the general setting. Theorems 3 and 4 in
(LM] claim that Theorems B, and B are valid also when F is assumed only
to be bounded (and not necessarily compact). This is false, as exhibited by

ExampLE 1. Let E={x € C[-1,1}; x(0)=3(x(—1)+ x(1)} (with the
sup norm), y,{t)=¢ G=spany,, F={x€E;0x(r) 1 —}¢|}. Since
ext B(E*) = {+e;; 0 < |t| < 1} (where e,(x)=x(¢)), G is a one-dimensional
interpolating  subspace. rp(F)=r(3,F)=3<1=r (F)=r(ay,, F) for
la] < 1.

A corrected version of the Lambert—Milman theorems should take care of
the w*-accumulation points of ext B(E*). Call an n — dimensional subspace
Y =span{y,,..,y,} of E strictly interpolating if no nontrivial linear
combination of » linearly independent functionals in the w™*-closure
ext B(E*) annihilates Y.

Other equivalent statements of the strict interpolation condition are:
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(i) For every linearly independent fi..., f, € ext B(E*),
det[f{(y;)] # 0.

(i) For every linearly independent f,....,f, € ext B(E*), and scalars
Cy,ms €, there is a unique y € Y with fi( y) = ¢, for i=1,.., n.

(iii) For every linearly independent f,....f, € ext B(E*), E*=
Y @ span{ fy .. Sy}

Interpolating subspaces of E are trivially strictly interpolating if ext B(E'*)
is w*-closed, e.g., in C(T) spaces (T compact) or L'(u) spaces, or if
ext B(E*)U 0 is w*-closed, e.g., in Co(T) spaces (T locally compact).

Call G E a strictly RS-set if it is an RS-set, and the interpolation
condition is replaced by strict interpolation.

THEOREM C. If G is a strictly RS-set in the normed space E, then for
every bounded F C E with r(F) < rg(F), Z (F) is a singleton.

In particular,

THEOREM C,. If G is a strictly interpolating subspace of the normed
space E, then for every bounded Fc E with rp(F)<rg(F), Z,(F) is a
singleton.

Proof of Theorem C. We shall show that if y', y” € G, and z € E satisfy
r(y', Fy=r(y",F)> r(z, F) + 2¢, for some ¢ >0 and y’ # y”, then there is
YEG with r(p, F) <r(y, F).Ify' =31 cly,and p" =31 ¢y, let [y =
{i; J; of type IIl or ¢} # c/'}. Since G is a strict RS-set, W = { f€ ext B(E*);
S(¥')=f(y")} spans a subspace of dimension smaller than card /,, and
there is yy=3"ic; 4; ¥ + X er, Ciy; With f(yo) =f(z) for every f€ W. Let
V={f€ext B(E*); |f(y,) —f(2)l <e}. V is relatively w*-open, hence
ext B(E¥)\V is w™*-compact and, since f(p')#f(y") off V, n=
min{|f(y") —Ay"); S € ext B(E*)\V'} > 0. Let § = min{|c} — c¢/'|; i € I, and
c;#cf'l. Choose a€(0,1) with |2a(t;—(c]+c/) <9, 4a(|yl+
Supcp [ xII) <7 and let y=((1—a)2)(3' + ")+ o= Yer (1 — a)/2)
(ci+el)+at)yi+2 e, civie Then y€G by the choice of a. If
|x—yll>q for some x€&F, then there is some f€E extB(E*) with
| fx) =Sl >q I feV, then g <[fx)—-f(»I<{-0a)
fG)=F (' +y")2) + alfx)—f@+e) < (I—a) r(y,F) +
a(r(z,F)+¢) < r(y,F)—ea. If f&V, then |f(x)—31f0 +y")<
max(lf(x) =/ (), S =) — 210 —=S(")] < r(y', F)—am
hence g <|f(x)—f(»)] < A —a)r(y",F)—3m) + aflx]l + [Ixl) <
r(y', F)—in. Thus r(y, F) < r(y’, F) — min(§ 9, €a).
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The mistake in [LM] stems from a blunder in the proof of Theorem 2.
Lambert and Milman relate to a bounded nontrivial F c E the space
A, =E @® R with the norm ||(x, A)|| = r{x, AF). Their Theorem 2 claims that if
(f, ) Eext B(A}) then fE€ ext B(E*). The proof is first carried out in the
case where F is a finite set, and the reduction argument is (4) B(4})=
UJ{B(A}); F' c F, F' finite} which seems to follow from B(4,) = ({B(4,.):
F' c F finite}. This deduction is false, e.g.,

ExampLE 2. Let F={e;k=1,2,.} be the set of unit vectors in
E=1, f=3% ,ef€l, (the constant sequence (1,1,1,.)). The A,
norm is [|(x, A)| = sup, || x —Ae,]l, so that [|(f,0)] =sup{| >, x;];
sup, [l x — de ]| < b =sup{}7_,[x;[s  sup, Xiilx| <1 =1 If F,=
{exs k=1L..,n} then, in A, [(Zi-, (1/(n—1))e, 1/(n—1)j=1, while
(£ ONTh, (1/(n — 1)) e 1/{n — D)) = n/(n — 1), 50 that (£, 0) & B(AF).

We can see from Example 1 that Theorem 2 is false. In this case the 4,
norm on the two dimensional subspace G @ R is the /%, norm |[(ay,, A)|| =
max(|a|, |4]), and the extreme points of the dual ball are (0, 1) and (1, 0).
But these extreme points are restrictions of functionals (f, ) € ext B(4}),
while clearly no f€ ext B(E*) is 0 on G.

Equation (4) in the proof of Therem 2 is valid, however, when F is
compact (or even “remotal”), since in this case ||(x, A)[| = [|(x, 4)||,.,» where z
is a farthest point from x in AF. Therefore, Theorem B can be proved by the
proof of Theorems 2—4 in [LM]. A more direct approach is also possible,

e.g.,

Sketch of a Proof of Theorem B,. Suppose ty, € Z,(F). By a result of
Laurent and Tuan (cf. [AM] for a direct proof), there is g, in the w*-closure
of {fE€extB(E*); f(x+ty,)=r F) for some x&F} with g,(y,)=
max,.f(»), which in our case means g, € G'. The Caratheodory and
Krein-Milman theorems provide us with fj...., f, € ext B(E*), x4,.... X, E F
and ¢g,..., ¢, >0 such that 37 c;=1, f37_ c,f; € G, and fi(x; + y,) =
re(F)=rgi{xgs x,}, hence fi(y,) =0 for i=0,.,n If f=0, then by the
same characterization of Chebyshev centers, 0 € Z,.(F) and r.(F) = r.(F),
contradicting our assumption. Therefore, since G is interpolating, fj...., f, are
linearly independent. But then, for the same reason y, = 0.

3
Checking the proof of Theorem C it is seen that we can weaken the strict
interpolation condition, e.g.,
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THEOREM D,. If Y is a subspce of the normed space E such that for
every €Y, z€E and €>0 there is y, €Y satisfying inf{f(y,);
SEextB(E*), |f(z—yy) > €} >0, then for every bounded Fc E with
re(F) < rg(F), Z4(F) is at most a singleton.

EXAMPLE 3. An infinite dimensional subspace Y satisfying the
conditions of Theorem D, E={x€ C[-1,1]; x(0)=0}, Y={x€EE; x
restricted to [0, 1] is a polynomial of degree <n}.

4

A uniqueness theorem of an individual type was given in |SS|. Theorem 1
states that if K is a (not necessarily convex) compact subset of a normed
linear space £ and F < E is “uniquely remotal” with respect to K (i.e., such
that every x € K has a unique farthest point in F), then Z,(F) is a single
point. This is false, even if we assume K, F convex, or if we change the
assumption to K being uniquely remotal with respect to F.

ExXAMPLE 4. (a) FE any, K={x,p}, F={{x+y)/2}.
(b) E non-strictly convex, K = |x, y| = S(E), F = {0}.
(c) Eany, K=F={x,p}

(d) E=I@,K=[-e, e F={e +e,)

In none of these examples is Z,(F) a singleton.
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